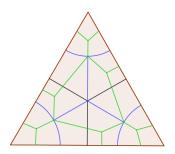
Topological invariants of surfaces from the Hecke algebra

Alexander Thomas (MPIM Bonn)

25 mai 2021



joint with Vladimir Fock and Valdo Tatitscheff

Motivation

Objective

Describe the space of all functions of the character variety $\operatorname{Hom}(\pi_1(\Sigma), G)/G$.

function on Teichmüller space

Motivation

Objective

Describe the space of all functions of the character variety $\operatorname{Hom}(\pi_1(\Sigma), G)/G$.

function on Teichmüller space

Idea

Use the Satake correspondence :

$$\operatorname{\mathsf{Fun}}(\operatorname{\mathsf{Rep}}(G^L))\cong \mathcal{H}(\hat{G})$$

where $\mathcal{H}(\hat{G})$ is the spherical Hecke algebra for the affine group.

Overview

For a finite Hecke algebra:

$$\begin{array}{ccc} \text{surface with} & + & \text{Coxeter} \\ \text{triangulation} & + & \text{system} \end{array} \Rightarrow \begin{array}{c} \text{Laurent} \\ \text{polynomial} \end{array}$$

Overview

For a finite Hecke algebra:

Theorem (Fock, Tatitscheff, T., 2021)

- This construction does not depend on the triangulation. Hence it gives a topological invariant of the surface.
- The construction can be extended to a topological quantum field theory (TQFT) for ciliated surfaces.
- The Laurent polynomials have positive coefficients for a Coxeter system of classical type and for type H₃, E₆, E₇.

Plan

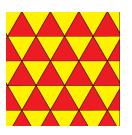
- Hecke algebras
- 2 TQFTs and ciliated surfaces
- 3 TQFT from Hecke algebras
- 4 Schur elements and positivity

- 1 Hecke algebras
- 2 TQFTs and ciliated surfaces

- TQFT from Hecke algebras
- 4 Schur elements and positivity

Coxeter groups

Coxeter group = reflection group



Definition

A Coxeter system (W, S) is a group presented by

$$W = \langle s \in S \mid (st)^{m_{st}} = 1 \rangle$$
,

where $m_{st} \in \mathbb{N} \cup \{\infty\}$ with $m_{ss} = 1$.

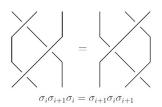
Example: symmetric group

Proposition

The symmetric group allows the following presentation:

$$\mathfrak{S}_n = \langle \sigma_1, ..., \sigma_{n-1} \mid \sigma_i^2 = 1, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, [\sigma_i, \sigma_j] = 1 \forall |i-j| > 1 \rangle.$$

So $m_{i,i+1} = 3 \ \forall i$ and $m_{i,j} = 2$ for all |i-j| > 1.



$$\left| \cdots \middle \times \cdots \middle \times \cdots \right|$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ si } |i - j| \ge 2$$

Iwahori-Hecke algebras

Hecke algebra \approx deformation of $\mathbb{C}[W]$.

Definition

The **Hecke algebra** associated to (W, S) is the free $\mathbb{Z}[v^{\pm 1}]$ -algebra presented by

$$\mathcal{H}_{(W,S)} = \langle (h_s)_{s \in S} \mid h_s^2 = (v^{-1} - v)h_s + 1, (h_sh_t)^{m_{st}} = 1 \forall s \neq t \rangle$$
.

Iwahori-Hecke algebras

Hecke algebra \approx deformation of $\mathbb{C}[W]$.

Definition

The **Hecke algebra** associated to (W, S) is the free $\mathbb{Z}[v^{\pm 1}]$ -algebra presented by

$$\mathcal{H}_{(W,S)} = \langle (h_s)_{s \in S} \mid h_s^2 = (v^{-1} - v)h_s + 1, (h_sh_t)^{m_{st}} = 1 \forall s \neq t \rangle$$
.

For $w = s_1 \cdots s_k$, put

$$h_w := h_{s_1} \cdots h_{s_k}$$
.

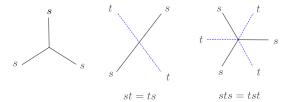
Proposition

The $(h_w)_{w \in W}$ form a basis of the $\mathbb{Z}[v^{\pm 1}]$ -module \mathcal{H} , called the **standard** basis.

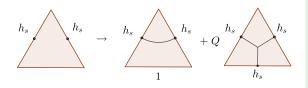
Graphical calculus

Diagrammatical way to multiply in the Hecke algebra: graphs with edges labeled by simple reflections.

Vertex types:



Quadratic relation



Graphical calculus - Example

Example

Let us multiply h_{sts} with h_{st} in $\mathcal{H}_{(\mathfrak{S}_3,\{s,t\})}$. The direct computation reads:

$$h_{sts}h_{st} = h_s h_t h_s^2 h_t$$

$$= h_s h_t^2 + Q h_s h_t h_s h_t$$

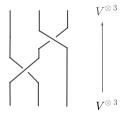
$$= h_s + Q h_s h_t + Q h_s^2 h_t h_s$$

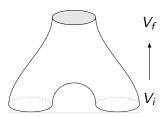
$$= h_s + Q h_{st} + Q h_{ts} + Q^2 h_{sts} .$$

- Hecke algebras
- 2 TQFTs and ciliated surfaces

- TQFT from Hecke algebras
- 4 Schur elements and positivity

Basic idea





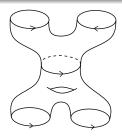
Principle

- Boundary component = vector space
- Union = Tensor product
- Manifold between boundaries = linear map

Definition (Atiyah, 1988)

A topological quantum field theory associates

- a f.g. Λ -module Z(N) to each oriented d-dimensional manifold N,
- $Z(M) \in Z(\partial M)$ for each oriented (d+1)-dimensional manifold M such that Z is
 - functorial with respect to orientation-preserving diffeomorphisms of N,
 - 2 involutary: $Z(M^*) = Z(M)^*$,
 - **1** multiplicative for disjoint union: $Z(M \cup N) = Z(M) \otimes Z(N)$,
 - multiplicative for gluing.



Ciliated surfaces

Definition

A ciliated surface is obtained by removing n disjoint open disks from a punctured surface $\Sigma_{g,k}$ and add marked points, called cilia, on the boundary circles.

Good geometric object to speak about triangulations.

- Hecke algebras
- 2 TQFTs and ciliated surfaces

- 3 TQFT from Hecke algebras
- 4 Schur elements and positivity

Decorated triangulations

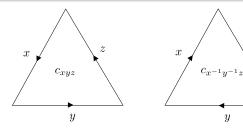
Structure constants in the Hecke algebra:

$$h_x h_y = \sum_{z \in W} c_{xyz}(v) h_{z^{-1}}.$$

Decorated triangulation

Take a triangulation of a ciliated surface and associate

- an element of W to each edge,
- the structure constant c_{xyz} to each face.



Definition of polynomial invariant

Definition

For a ciliated surface Σ with labeled boundary and triangulation, define

$$P_{\Sigma,W}(v) = \sum_e \prod_f c_f(v)$$

where the sum is over all labelings of internal edges, the product over all faces and $c_f(v)$ is the label of face f.

Example

Consider $\Sigma_{1,1}$ and $W = \mathfrak{S}_2$. Then

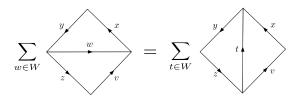
$$P_{\Sigma,W} = \sum_{x,y,z} c_{xyz}(y) c_{xzy}(y) = v^2 + 4 + v^{-2}.$$

Independence of triangulation

Theorem

This construction is independent of the triangulation. Hence, we obtain a topological invariant of the ciliated surface.

This comes from the associativity in the Hecke algebra.



Examples and observations

Example

- $P_{0,3,\mathfrak{S}_2}(v) = P_{1,1,\mathfrak{S}_2}(v) = v^2 + 2 + v^{-2}$.
- $P_{0,4,\mathfrak{S}_2}(v) = v^4 + 2v^2 + 2 + 2v^{-2} + v^{-4}$.
- $P_{0,3,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 10v^2 + 10 + 10v^{-2} + 2v^{-4} + v^{-6}$.
- $P_{1,1,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 4v^2 + 4 + 4v^{-2} + 2v^{-4} + v^{-6}$.

Examples and observations

Example

- $P_{0,3,\mathfrak{S}_2}(v) = P_{1,1,\mathfrak{S}_2}(v) = v^2 + 2 + v^{-2}$.
- $P_{0.4.\mathfrak{S}_2}(v) = v^4 + 2v^2 + 2 + 2v^{-2} + v^{-4}$.
- $P_{0,3,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 10v^2 + 10 + 10v^{-2} + 2v^{-4} + v^{-6}$.
- $P_{1,1,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 4v^2 + 4 + 4v^{-2} + 2v^{-4} + v^{-6}$.

Oberservations

For punctured surfaces, we observe that P

- is a polynomial in $q = v^{-2}$,
- is symmetric in $q \mapsto q^{-1}$,
- has positive integer coefficients.

Intrinsic definition

Aim of reformulation:

- Description independent of a fixed basis,
- ullet Arbitrary elements in ${\cal H}$ as boundary labels.

Definition

The standard trace of the Hecke algebra is the map $tr:\mathcal{H}\to\mathcal{H}$ given by

$$\operatorname{tr}\left(\sum_{w\in W}a_wh_w\right)=a_{id}.$$

Proposition

The standard trace is symmetric and non-degenerate.

Traces everywhere

All the ingredients of our construction can be expressed via the trace:

Proposition

The structure constants are given by $c_{xyz} = \operatorname{tr} h_x h_y h_z$.

The trace allows to identify \mathcal{H}^* with \mathcal{H} . Let $(C_w)_{w \in W}$ be any basis of \mathcal{H} . We denote by $(C^w)_{w \in W}$ the dual basis with respect to the trace:

$$\operatorname{tr} C_{v}C^{w}=\delta_{v}^{w}.$$

Proposition

The dual to the standard basis is given by $h^x = h_{x^{-1}}$ since

$$\operatorname{tr} h_{x} h_{y} = \delta_{xy=1}$$
 .

Hecke TQFT

Decorated triangulation revisited

Take a triangulation of a ciliated surface and associate

- ullet a copy of ${\mathcal H}$ or ${\mathcal H}^*$ to each oriented edge,
- a tensor c_f to each face f whose elements are given by the structure constants.

Gluing = natural pairing between \mathcal{H}^* and \mathcal{H}

Hecke TQFT

Decorated triangulation revisited

Take a triangulation of a ciliated surface and associate

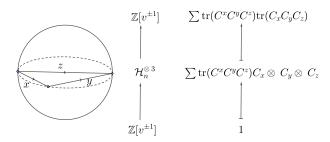
- ullet a copy of ${\mathcal H}$ or ${\mathcal H}^*$ to each oriented edge,
- a tensor c_f to each face f whose elements are given by the structure constants.

Gluing = natural pairing between \mathcal{H}^* and \mathcal{H}

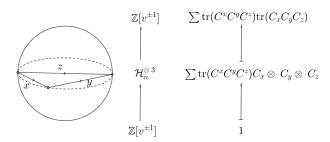
Theorem

This construction gives a non-commutative TQFT for ciliated surfaces.

Polygonal gluings



Polygonal gluings



Proposition

For punctured surfaces $\Sigma_{g,k}$, we have

$$P_{g,k,W} = \operatorname{tr}(\sum_{w} C_w C^w)^{k-1} (\sum_{a,b} C_a C_b C^a C^b)^g$$
.

- Hecke algebras
- 2 TQFTs and ciliated surfaces

TQFT from Hecke algebras

4 Schur elements and positivity

Key observation

Proposition

The element $s = (\sum_w C_w C^w)^{k-1} (\sum_{a,b} C_a C_b C^a C^b)^g$ is in the center of \mathcal{H} .

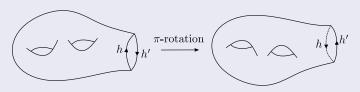
Key observation

Proposition

The element $s=(\sum_w C_w C^w)^{k-1}(\sum_{a,b} C_a C_b C^a C^b)^g$ is in the center of \mathcal{H} .

Proof.

It is sufficient to show that $tr(shh') = tr(hsh') \ \forall \ h, h' \in \mathcal{H}$. This comes from our TQFT by a rotation of angle π .



Center of Hecke algebra and Schur elements

Correspondence trace function - central element:

Proposition

An element in \mathcal{H}^* given by $h \in \mathcal{H} \mapsto \operatorname{tr}(h_0 h)$ is a trace function iff $h_0 \in \mathcal{Z}(\mathcal{H})$.

Center of Hecke algebra and Schur elements

Correspondence trace function - central element:

Proposition

An element in \mathcal{H}^* given by $h \in \mathcal{H} \mapsto \operatorname{tr}(h_0 h)$ is a trace function iff $h_0 \in \mathcal{Z}(\mathcal{H})$.

Definition

- χ_{λ} : irreducible character of \mathcal{H}
- $Z_{\lambda} \in Z(\mathcal{H})$: corresponding element in the center
- the **Schur element** s_{λ} : Z_{λ} acts by s_{λ} id on irrep V_{λ}

Proposition

The Schur elements $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ form a basis of the center $Z(\mathcal{H})$ satisfying:

$$Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda} \ \forall \ \lambda,\mu \in Irr(\mathcal{H}) \ .$$

Artin-Wedderburn decomposition:

$$\mathcal{KH}\simeq igoplus_{\lambda\in \mathsf{Irr}(\mathcal{KH})}\mathsf{End}(V_\lambda)\;.$$

Proposition

The Schur elements $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ form a basis of the center $Z(\mathcal{H})$ satisfying:

$$Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda} \ \forall \ \lambda,\mu \in Irr(\mathcal{H}) \ .$$

Artin-Wedderburn decomposition:

$$\mathcal{KH} \simeq igoplus_{\lambda \in \mathsf{Irr}(\mathcal{KH})} \mathsf{End}(V_{\lambda}) \; .$$

Lemma

Using the basis $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ of $Z(\mathcal{H})$, we get

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$P_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$
.

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$P_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$
.

Proof

$$\begin{split} P_{g,k,W}(q) &= \operatorname{tr} \left(\left(C_w C^w \right)^{k-1} \left(C_x C_y C^x C^y \right)^g \right) \\ &= \operatorname{tr} \left(\sum_{\lambda} \operatorname{dim} V_{\lambda} Z_{\lambda} \right)^{k-1} \left(\sum_{\lambda} s_{\lambda} Z_{\lambda} \right)^g \\ &= \operatorname{tr} \sum_{\lambda} (\operatorname{dim} V_{\lambda})^{k-1} s_{\lambda}^{2g-2+k} Z_{\lambda} \\ &= \sum_{\lambda} (\operatorname{dim} V_{\lambda})^k s_{\lambda}^{2g-2+k}. \end{split}$$

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$P_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$
.

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$P_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$
.

Remarks

- We easily get the invariance under $q \mapsto q^{-1}$.
- We can put k = 0, even if we don't know how to define P.
- For q=1, we get $P_{g,k,W}(1)=(\#W)^{2g-2+k}\sum_{\chi}\frac{1}{\chi(1)^{2g-2}}$.

Example

For $W = \mathfrak{S}_2$, we have $s_1 = 1 + q$ and $s_2 = 1 + q^{-1}$. Hence

$$P_{g,k,W}(q) = (1+q)^{2g-2+k} + (1+q^{-1})^{2g-2+k}$$
.

Positivity

Theorem

The polynomial invariant $P_{g,k,W}(q)$ has positive coefficients for all classical W and for the exceptional types H_3 , E_6 and E_7 . For all other types, it may have negative coefficients.

Example

For G_2 and $\Sigma_{0,3}$, we have

$$P_{0,3,G_2} = q^6 + 2q^5 + 2q^4 + 2q^3 + 2q^2 + 72q - \mathbf{18} + \dots$$

Positivity

Theorem

The polynomial invariant $P_{g,k,W}(q)$ has positive coefficients for all classical W and for the exceptional types H_3 , E_6 and E_7 . For all other types, it may have negative coefficients.

Example

For G_2 and $\Sigma_{0,3}$, we have

$$P_{0,3,G_2} = q^6 + 2q^5 + 2q^4 + 2q^3 + 2q^2 + 72q - \mathbf{18} + \dots$$

Theorem

The Schur elements $s_{\lambda}(q)$ have positive coefficients for all Coxeter groups of classical type and for the exceptional types E_6 and E_7 .

Proof uses an explicit formula of Maria Chlouveraki.

Explicit expression for ciliated surfaces

Lemma

For $h \in \mathcal{H}$, the element $\sum_w C_w h C^w$ is in $Z(\mathcal{H})$ and decomposes as

$$\sum_{w} C_{w} h C^{w} = \sum_{\lambda} \chi_{\lambda}(h) Z_{\lambda} .$$

Explicit expression for ciliated surfaces

Lemma

For $h \in \mathcal{H}$, the element $\sum_{w} C_{w} h C^{w}$ is in $Z(\mathcal{H})$ and decomposes as

$$\sum_{w} C_{w} h C^{w} = \sum_{\lambda} \chi_{\lambda}(h) Z_{\lambda} .$$

Theorem

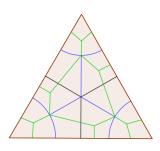
For a ciliated surface Σ with boundary labeled by $h_1,...,h_n\in\mathcal{H}$, we have

$$P_{\Sigma,W} = \sum_{\lambda} (\dim V_{\lambda})^k (s_{\lambda})^{2g-2+k+n} \chi_{\lambda}(h_1) \cdots \chi_{\lambda}(h_n).$$

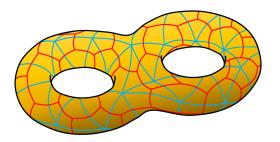
- Marked point = boundary labeled by $1 \in \mathcal{H}$, since dim $V_{\lambda} = \chi_{\lambda}(1)$.
- Positivity in type A if labels are in $\mathcal{H}_{\geq 0}$ (wrt. Kazhdan–Lusztig basis).

Opening

- Graphical calculus and link to ramified covers
- Generalisation to more general symmetric algebras
- Generalisation to affine Hecke algebras
 - Higher laminations
 - Link to spectral networks?
- Categorification?



Thanks for your attention!



V. Fock, V. Tatitscheff, A.T., *Topological quantum field theories from Hecke algebras*, arXiv:2105.09622